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Abstract—A linear model of anisotropic dry friction is completed with properties about principal
directions of friction and friction symmetries. Next, a nonlinear model of frictional anisotropy is
formulated. It describes the anisotropy with arbitrary number of principal directions of friction and
with arbitrary shape of a friction force hodograph. Types of frictional anisotropy are classified with
the aid of symmetry groups. Figures illustrate different frictional anisotropy classes and the influence
of anisotropic friction on a material point motion.

I. INTRODUCTION

Friction which depends on the direction of sliding is called anisotropic friction. A deviation
in the friction force from the direction of sliding and a dependence of the friction magnitude
on the sliding direction are typical features of contacts with frictional anisotropy. There are
exceptions to this rule. For the isotropic friction case and for particular sliding directions
which are called the principal directions of friction, the friction force is opposite to the
sliding direction.

Friction depends on the sliding direction as a result of anisotropic surface roughness
originated by machining and/or wear. Wear processes cause progressive changes in the
initial surface roughness and in the frictional anisotropy. The topography of a surface has
a strong influence on dry friction and mixed friction. It has been investigated experimentally
by Diacenko (1946), Rabinowicz (1957), Sharpin (1957), Halaunbrenner (1960) and Zicl-
inski (1964). The influence of directional surface structure on friction decreases as surface
smoothness increases but it does not vanish completely. At present, there are some possi-
bilities of controlling the machining process and a prescribed surface roughness can be
produced.

Rabinowicz (1957) and Halaunbrenner (1960) realized experimental investigations of
the friction force component normal to the sliding direction. This component occurs when
the friction force direction is different from the motion direction. Sharpin (1957) reported
that the type of anisotropy and magnitude of friction between two surfaces with known
roughnesses and similar hardnesses depend on the relative position of the surfaces. Various
roughness magnitudes have been taken into consideration. The root mean square of the
surface roughness had a value ranging from 0.25 to a few micrometres. [n an extreme case
it reached 42 um (Halaunbrenner, 1960).

Mechanical properties of materials depending on a direction are another reason for
frictional anisotropy. The anisotropy of mechanical properties appears essentially in crys-
tallinc and fibrous materials. It was observed that the friction depends on the orientation
of the molecular chains of PTFE and the sliding direction (Tabor and Williams, 1961).
Friction anisotropy has been obtained in testing unidirectionally crystallized aluminium-
copper alloys (Topfenec er al., 1984). The friction of composites depends on fiber orientation
with respect to the sliding direction as was experimentally demonstrated by Roberts (1984)
and Minford and Prewo (1985).

Measurements of the effect of sliding orientation on friction between rough surfaces
or composites show that it is a well defined phenomenon. They show that the friction
magnitude may change by up to 30% depending on the orientation (Minford and Prewo,
1985), whereas its direction may differ from the sliding direction by an angle equal to a few
degrees (Rabinowicz, 1957; Halaunbrenner, 1960). The friction magnitude and the angle
of inclination of the friction force are continuous functions of the sliding direction angle.
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Anisotropy of mechanical. thermal. electrical. magnetic and optical properties 1s a
fundamental feature of crystals (Nye, 1957). Surface properties of erystals such as: friction
(Seal, 1957 Bailey and Gwathmey. 1962: Bowden and Brooks. 1966 Buckley, 1968;
Stetjn. 1969 Casey and Wilks, 1973 : Enomoto and Tabor, 1980: Ohmae. 1980 : Mivoshi
and Bucklev. 1982), wear (Duwell, 1969}, hardness {(Brooks er al., 1971}, surface tension,
adsorption, chemical activity, etc. are also anisotropic. The frictional anisotropy has been
measured for single crystals of diamond (Seal. 1957 Bowden and Brooks. 1966 Casey
and Wilks. 1973 : Enomoto and Tabor, 1980). copper (Bailey and Gwathmey, 1962 Ohmae.
1980). rutile (Steijn, 1969). SiC {Miyoshi and Buckiey. 1982), magnesium oxide {Bowden
and Brooks. 1966) and lithium fluoride (Bowden and Brooks. 1966). Furthermore, inves-
tigations of the frictional anisotropy for cobalt. beryllium, rhentum, titanium. aluminium,
iron and sapphire are summarized by Buckley (1968) and Ohmae (1980).

Diamond natural faces are usually extremely rough. For precision optical works they
are polished. Since the Middle Ages it has been known that diamond offers different
resistances to polishing in different directions on different surfuces. It was discovered that
on the same plane, there are both easier and harder polishing directions.

The frictional anmisotropy of crystals results from directional differences in the arrange-
ment of atoms in a crystal lattice. Investigations show that friction and wear depend
on crystallographic plane and on the sliding direction orientation with respect to the
crystallographic system. The frictional anisotropy of single crystals achieves high values.
The magnitude of change of the friction force with the shiding direction may reuach 300%
(Bowden and Brooks, 1966). It was found (Scal, 1957), that the frictional anisotropy
magnitude depends on the relative orientation of the faces of both contacting crystals.

Orthotropic dry friction (i.e. the case in which two principal directions arc orthogonal)
has been analysed in a limited number of papers. In cach case tt was assumed u priori that
the friction forces could be deseribed with respect to the principal directions. Moszynski
(1931), Zicmba (1952) and Vantorin (1962) assumed that the extremity of the orthotropic
friction force vector draws dilferent curves on a plane and they carrted out an analysis on
this basis. Huber (1957) considered the orthotropic friction to be analogous to a distribution
of normal stresses in a plane state of stress. Fredriksson {1976), Michalowski and Mroz
(1978), Zicgler (1981, Curnier (1984) and others assumed that the anisotropic friction
forces can be derived in a similar way as constitutive relations in the theory of plasticity.

In this paper a phenomenological model of frictional anisotropy formulated by Zmi-
trowicz (1977, 1978 and 1981) is extended into a nonlincar model and s completed with
new properties, interpretations and graphical illustrations. Tensor algebra in connection
with symmetry groups provides a good mathematical apparatus for describing anisotropic
friction. We shall apply symmetry group theory to obtain a mathematical classification of
anisotropies.

2. A LINEAR MODEL OF ANISOTROPIC FRICTION
According to the thermodynamical theory of constitutive equations of friction (Zmi-
trowicz, 1987, 1988). the friction force vector t can be a function of the slip velocity unit
vector v and the normal pressure N, e.g.

t= —Nf(¥) ()
where
t=t‘k,6(‘{2 = | 2 (2)
v=1rlee§, j=12 3)
¥l =1 )
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& and &, are two two-dimensional vector spaces and {k,} is an orthogonal basis of unit
vectors in &> and {e,] is an arbitrary unit vector basis in £.. Let us consider a linear case
ofeqn (1).1.e.

t= —NC,v (6)

where C, is a nonsingular, second-order tensor. This tensor belongs to a space .7, being
the tensor product of the vector spaces { :and &

f;':ff:@

+a Oy

2 )]

The tensor C, can be expressed as a linear combination of the four tensor basis elements
k®e,

C| zC”k,@e,eﬁ’;. (8)

The tensor C, was called Coulomb friction tensor. Zmitrowicz (1977, 1978, 1981). Equation
(6) has the following form in the representation notation:

t=—NC"k,®e)('e) = ~NCr k,. 9

Generally the vectors t and v are not colincar. They have different norms and directions.
The mapping t from a unit sphere in §, into (;f; is not lincar but it can be extended into a

lincar mapping from &, into {:"

Some physical propertics of nature are described by sceond order tensors, e.g. stress,
heat conduction, diffusion, clectric conduction, magnetic permeability, cte. Here, the
sccond-order friction tensor characterizes a linear model of frictional anisotropy. Equation
{6} is a generalization of the models of dry friction formulated by Amontons and Coulomb.

The lour coctlicients defining the representation of the tensor € with respect to o given
tensor busis will be obtained from the friction force distribution over the contact. This
approach provides a physical interpretation of the friction tensor coeflicients. We shall
specify the class of friction problems which can be described by this lincar model.

Two arbitrary directions 0¢ and 0Oy called experimental directions at the contact arca
are defined with respect to the orthogonal reference system Oxy by the angles ¢, and ¢, (Fig.
1). During the sliding, the friction forces ¢; = u:N and 1, = y, N acting on a line segment of
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Fig. 1. Friction force components referred to sliding along the axes of the experimental system 08y
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length ds inclined at an angle 4 are oriented along the directions 0 and On. Slip occurs in
the positive sense of the experimental directions. The four parameters y,, (i. j = 1,2). which
are called the coefficients of friction. are defined by decomposition of the friction forces
into components in the directions 05 and On. The sign convention for the friction force
components is shown in Fig. 1.

Hypothesis 1. Let us assume that the friction force acting on the sliding segment ds
inclined at angle x, with respect to the Ox axis can be defined as the sum of two friction
force components. These components can be interpreted as the friction forces acting on ds
projections when they are sliding along the directions 0 and 0On.

With the above assumption, the friction forces are described by formulae analogous
to the relations used in classical elasticity to define the stresses acting on a surface element.
The sides of the triangular element are parallel to the axes of the coordinate system 0¢n
(Fig. 2). The stress p, acting on the side ds is equal to the sum of the stresses acting on the
sides ds; and ds,. These stresses are decomposed into components parallel to the directions
0 and 0#. Since we are not using conditions in which equilibrium of the moments holds,
all relations between the stresses are referred to an asymmetric state of stress. The assumed
analogy between the stresses in a plane state of tension and friction forces gives us a
correspondence between the stress components g, 7,;, 7s,, 4, and the friction coefficients
o Bz By, feee

Substituting the friction coefficients resulting from the assumed analogy into the stress
magnitude expression

3

pe= o) + ()] (10)

we obtain the anisotropic friction cocflicient for any sliding direction x,. It can be given
by

e = [(n]) + ()] ? (1)

where g} and gy are friction coeflicients of the friction force component colinear with the
sliding direction and normal to this direction. The cocflicients g} and u} are determined by
the stress relations for ¢, and 1, to give

( ! ) .
o= €CO8™ (% —&,)+ ftyy COS™ (a, —¢&,
o= (Er_{__t:v)[,ull ( )+ 4 ( V)

+ (240 cos (2 —¢&) cos (2, —¢,)] (12)

0 -

Fig. 2. Analogy between the friction force distribution at the contact and the plane state of stress.
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1
= cos (e.+¢)

[Th (a2, sin Qx,—2¢,) = 4p;, (22, - 2¢,)
+uz, sin (2, —¢,) cos (x,—&,)—u2 sin (2, —¢,) cos (z,—¢,)]. (13)

The friction force is inclined at an angle § to the direction of sliding. This angle is equal to
the angle between the stress p, and the sliding direction

tan f =—. (14

-0 (15)

produces u! and u; as functions of the direction angle a,. It is possible to find the directions
of extreme u! and y} by differentiating these functions with respect to a, and setting the
results equal to zero, as follows

du!

=0 (16)
dp
dfx =0. an

An analysis of the relations (16), (17) shows that the directions of extreme values for both
u! and p; are orthogonal in every case. The directions of u} extreme values are inclined at
an angle n/4 with respect to these of u!.

The quantities g, and § make it possible to calculate the friction force components and
the components of the friction tensor C, for any sliding direction «,. Thus, we get the
following matrix as a representation of C,

M1 COS E.+ iy SINE,  fy3 COS &+ Hap SIN €,

[CY] = cos (e.+¢,) cos (e, +¢,) (18)
M2 COS &, 441y, SiN €, ;3 €COS €,+ 1), SiN &,
cos (e,+¢,) cos (g, +¢,)
LY (19)
cos (g, +¢,) #0. (20)

Condition (20) means that two different measurements of the friction coefficients along the
same direction of sliding are not sufficient for the identification of friction. The contravariant
components v, of the sliding velocity unit vector with respect to the basis {e,;} are defined
as

[v,]7 = [cos (a,—¢,), cos (z,—¢,)]". @en

The friction coefficients y;, can be identified in different practical ways. For example, we
measure the friction force vectors for two arbitrary sliding directions. Next, by solving the
system of four equations (9), we obtain the coefficients y,,.

The following properties of the linear model of frictional anisotropy are described : the
decomposition of the second-order friction tensor, the gyroscopic part of the friction force
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component which refers to the antisymmetric part of the friction tensor. the eigenvalues
and eigenvectors of the orthotropic and isotropic friction tensors. positive definiteness of
the second-order friction tensor (Zmitrowicz, 1977, 1978, 1981). Here. they are completed
by new properties and interpretations.

Property 1. The linear model of frictional anisotropy determines the friction with two,
one or zero principal directions.

The friction force vector is colinear with the unit vector of slip velocity for shding in
principal directions of friction. Thus, the friction force vector expressed by (9) is related to
the unit vector v indicating the direction in the contact by

—NC v = — Ny, (22)

Simultancously the component of the friction force normal to the principal direction is
equal to zero. The equation

(Ci—ul)v=10 (23)

has a nontrivial solution if and only if the determinant of the coeflicient matrix is equal to
7ero, e

det (Cy—ply = 0. (24)

The discriminant A of eqn (24) determines the number of real cigenvalues of the friction
tensor CL I has two real cigenvalues and two cigenvectors when

A= (C'""=C*)y+4C"CY > 0. (25)
1t has only one real cigenvalue and one eigenvector when A = 0. It has no real eigenvalues
and no cigenvectors when A < 0.

The cigenvectors m, of the tensor C referring to the eigenvalues g, satisfy the equation

Cim, = uym,. (26)

We can employ the friction tensor representation, determined with respect to the tensor
basis k, ® k,,

C,=C'Ak®k ijl=12 (27)
where
cos &, sin &,
e, k' =4 = [ . ] (28)
sin &, COS &,

Then. the unit tensor in eqn (23) has the form
1 = (Sllk, ® k/ (29)

where 8" is the Kronecker delta. If the eigenvectors arc wanted in the basis of the orthogonal
system Oxv, they can be determined from (26) using (27) as

m, = nr'k,. (30)
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The friction tensor C, representation in the basis e, ® e, is

C=C4)"e®e, 3
and the unit tensor
[EE——L Y LY . 32
o Te) " AAle, Qe (32)
where
k= (A5) " 'e (33)
and
| sin (g, +¢€,)
TR = . ; . 34
G "0 [sin (e +¢) i ] et

Using (27) and (28) we get the eigenvectors associated with the experimental system 03y,
m, = mle,. (35

Substitution of the tensors (27) and (29) or (31) and (32) in eyqn (24) gives the same
cigenvalucs.

The following classification of the frictional anisotropy can be established : anisotropy
with two principal directions, anisotropy with onc principal direction and anisotropy
without principal direction. Considering the inclination angle ff in the case of the anisotropy
with one principal direction, we distinguish a class of permanently non-positive and per-
manently non-negative functions of the angle . However, the anisotropy without principal
directions has functions of the angle # being permanently positive or permanently negative.

Property 2. Anisotropic, orthotropic and isotropic friction can be distinguished with
the aid of the friction tensor C, and the group of symmetry.

Every mathematical description is endowed with an automorphism group called the
symmetry group of this description. The symmetry group of the lincar function (9) is
identical with the symmetry group of the friction tensor C,. A set of tensors with the tensor
composition operation as the group multiplication operation forms a symmetry group of
the tensor. The composition of two group elements is a group element. Here, we employ
rotations and mirror reflections (space symmetries) as symmetry operations. The group
axioms will be satisfied, i.e. the group multiplication operation is associative, there exist an
identity element and inverses of all group elements. The importance of groups lies in the
fact that they may be used to describe frictional symmetries, as will be indicated.

The subgroup %, of the full orthogonal group O is a group of symmetry of the tensor
C, and is defined by

CIJ’CI = {R:RE@, (@R)'C} =C|} (36)
where the operation of two compositions is denoted by ® and can be written as
i

(@} R)-C, = CRk; ® Re, = RC,R. (37)
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From (36) and (37) we get an equivalent formulation
RC, = C,R. (38)

The full orthogonal group (¢ contains all orthogonal transformations satisfying the
following

R '=R", detR= +1. (39)

The symmetry group of orthotropic friction has the trivial subgroup { £1} and the
subgroup of mirror reflections with respect to two-dimensional subspaces orthogonal to
the principal directions of friction. i.e.

Ge, = {+1.Jn, Ju}- (40)

The description (40) denotes the fourth-order subgroup (%c, € ¢’) generated by 1. — L. Jn,
and J,,. 1 is an identity transformation and -1 is called the central inversion trans-
formation. The mirror reflection with regard to two-dimensional subspace orthogonal to
the principal direction m, can be obtained by a composition of the rotation about m, and
the central inversion

Jo = —1R, =12 41
The tensor Ry, describes the rotation about the axis m, through the angle of rotation n. The
mirror reflections on two mutually perpendicular plancs characterize orthotropic friction.
All composition opcrations for elements of the orthotropic friction symmetry group may
be given in the form of the following multiplication table (Cuayley square).

1 -1 Ja, Jn,
1 1 -1 Ju,
-1 | =1 1 Jo, (42)
SO R S I -1
Jo, | Jm,  dm, ~1 1

Any second-order symmetric tensor may be the tensor of orthotropic friction. It has
the group of symmetry of the type (40) and satisfics the condition

C, =Cl. (43)

The second-order tensor is symmetric if its representation matrix is symmetric. Taking the
friction tensor in the form used for determining the principal directions of friction (27), we
find restrictions on g,,. £, and ¢,. Thus, the tensor (27) is symmetric if

iz =y (44)

for any g,,€ # and £, ¢, such that (20) holds. The condition (43) determines a number of
independent elements of the orthotropic friction tensor C;.
The second-order orthotropic friction tensor has two real eigenvalues and two mutually
orthogonal eigenvectors. It is a classical result of linear algebra (Eringen, 1967).
Anisotropic friction has only a trivial two-¢clement group of symmetry
G = {+1}. (45)
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There are no restrictions on the anisotropic friction tensor representation. The multi-
plication operations of the symmetry transformations (45) are given in the following Cayley
square

1 1 -1 46)

The multiplication tables (42) and (46) show that the symmetry groups (40) and (45) are
commutative (Abelian) groups. This is manifested in the symmetry of the tables with respect
to the main diagonal.

The full orthogonal group @ is the symmetry group of isotropic friction

G = 0. @7

This group is a continuous group. Any second-order spherical tensor is the isotropic friction
tensor and its group of symmetry is of type (47). The spherical tensor has the following
form

C, =pul, ped. 48)

Taking the tensor (27) we get restrictions on gy, £, and &,. Thus, the friction tensor C, is
spherical if

Hyy = Hya, R =l =0 (49)

£, = —¢, (50)
for any p,e# and ¢,, &,, with restriction (20). From (48) it is seen that there is one
independent element of the isotropic friction tensor C,.

It was proved (Zmitrowicz, 1981) that the anisotropy tensor maps a circle into an
ellipse. This geometrical image of the friction force vectors is called the hodograph of the
friction force. A circle is the isotropic friction force image. The ellipse drawn by the friction
force vectors attached to the origin of the coordinate system 0XY is described by the

following equation

aX?4+2bXY+cY? = N? (51)
where
1 N
a= ?[(c-‘)=+(cn)2} (52)
i
- *;E_(CIZCZZ-*_CHCZI) (53)
1
=Zj[(cll)2+(cl2)2] (54)
e = CIICZZ__CIZCZI. (55)

Sometimes it is called the cross-section of the friction cone. With the aid of eqns (51)-(55)
we formulate the static equilibrium condition between the tangential force to the contact
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and the friction force, i.e. adherence condition. Let
A=11f=(XY)XeA YA (56)
be a set of all possible tangential forces f acting at the contact area. Then a set
¢ = {f:feB,aX +20XY+cY* < N°; for fixed C,} (57)

defines the adherence condition for anisotropic friction. For sotropic friction (C, = ul)
we have

% = {f:feB X"+ Y < p N7, for fixed u}. (58)

In the case of static friction, the question of the friction force direction is simple. This
force is always opposite to the tangential force and both forces have the same magnitude.
The static friction force is a reaction.

Some properties of the lincar model will be represented by diagrams in Appendix A.

3. A NONLINEAR MODEL OF ANISOTROPIC FRICTION

Let us consider a constitutive equation of friction force vector (Zmitrowicz, 1987,
1988) of the form (1) where the friction force vector is a polynomial function of the form

t= —NCVv+C¥'+ - +C¥v" ) (59)
where
Chy" '=C (vOVE®- - ®v) = [(Cvv...]v. (60)
Ve ¥ o

The operation (+) means the full tensor composition. The vector function (59) is a polynomial
with respect to the vector argument and according to the objectivity axiom only odd order
terms must be included in the polynomial. In this paper, the first two terms of the polynomial
will be tuken into consideration. The second-order tensor C,, has been defined by (8). The
fourth-order tensor C, belongs to the linear space 7, formed by the tensor product of é;f 2

and three times & . Sixteen tensors of the form

k®e,®e,®e¢ Lk I=12 (61)
are base elements of’ 16-dimensional space F,. Then, we have
C: = C“I“k, ® e/' ® Ck ® e, € .%—,‘ (62)

xf-4=é“:®f§’2®¢?z®fg: (63)

where C** are arbitrary real numbers. The tnsors C, and C, are of even order.

The assumption of a polynomial for the function t is imposed by “mathematical
convenience™. Polynomial functions are very often used in continuum mechanics due to
their simplicity and a relative completeness of achieved results. Non-polynomial rep-
resentation of this function is allowed. We get the linear modet of frictional anisotropy (6)
if we restrict ourselves to the first term of the polynomial (59).

The total friction coefficient and the angle of friction force inclination for any sliding
direction can be obtained from the following relations.

i, = Nt (64)
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cos f=— %I—t (65)

Friction coefficients of the friction force components colinear with the sliding direction and
normal to it are given by

Hy = N""e-v| (66)
fy = N"Yt-vi (67)
where v* is a unit vector orthogonal to the sliding direction.
Let the base vectors {k,} and {e;} coincide with the orthogonal reference system 0xy.
The velocity unit vector components given with respect to this basis are
[v] = [cos «,, sin o] (68)
The unit vector orthogonal to the slip direction is
[v*] = [—sin a,, cos a,]". 69
Equation (59) has the following form in indicial notation
= —N(C"0,+ C"™ v, v+ ). {70)

By substitution of (68) into (70) we get components of the friction force vector

_N[C‘ll cos 1r+c|2 sin a‘,-f-C“” COS" ar+(cllll+cll21
+ ¢y cos? a, sin a H(CHRHCPRHCPY) sint a, cos a,

+C" 2 5int 2] (7))

’I

1= =N[C* cos 2, +C*¥ sina, +CH' cos® q +(CH124+CHH
+C22H) COSZ a, sin a,+(C2'22+C“”+C22“) sinz o, COS &,
+C?%5in o). (72)
The components CY and C“* are taken with respect to the tensor basis formed by the

orthogonal unit vectors.
The nonlinear model of frictional anisotropy has the following properties.

Property 1. The friction force equation of the form (59) satisfies the axiom of material
objectivity.

According to the axiom of material objectivity the friction function (59) of the unit
vector v and the scalar N must be form-invariant with respect to arbitrary transformation
from the full orthogonal group @, i.e.

t(Rv,N) = Rt(v,N), VRe0, {(73)

After substitution of (59) into (73) we get
t(Rv,N) = —NR{C v+ [(C,vyRT)Rv]v+ - - -} = Rt(v. N). (74)
The slip velocity and its unit vector are objective vectors. Thus, the friction force equation

(59) satisfies the objectivity axiom. The relations (74) show that only terms with odd number
of elements may be included in the polynomial (59).
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Property 2. Any friction tensor is positive definite.

From the Second Law of Thermodynamics it follows that in every case of frictional
contact the power of the friction force 1s nonpositive (Zmitrowicz, 1987)

t-V <0 (75)

where V is the sliding velocity, Substituting eqn (59) into (75) and taking into account that
& and | V] are positive and that

> (76)
V=
1Vl
we obtain the following condition
VIC, VAVIHC.vV]V 2 0 (77

for every V. The inequality (77) can be replaced by two restrictions on the friction tensors
C,and C,

VIC, V20 (78)

VIVIC.VIV 2 0. (79)

After decomposition of the tensor C into a symmetric and an antisymmetric part it is

seen that (78) is cqual to zero for the antisymmetric part of the tensor. The incquality (78)

holds for the symmetric part of the tensor C, if all main diagonal minors of the matrix
representation of the symmetric tensor are positive,

C''=0 (80)

det (J(C,+ChH] =0. (81)

It can be replaced by the condition that every eigenvalue of the symmetric part of the tensor
C, is non-negative and it has at least one nonzero eigenvalue,

Property 3. Friction with four, three, two, one or zero principal directions is determined
by the nonlinear friction equation (39) with two terms of the polynomial.
When sliding in a principal direction, the friction force vector is related to this direction
(v) by
t = —uNv (82)
where the vector tis defined by (59). In component notation referring to the orthogonal
system it has the form

t' = —uN cos «, (33)

3

I

—uN sin %, (84)

where p is a friction coeflicient for sliding in a principal direction. %, is an angle determining
the principal direction with respect to the reference system. After multiplication of eqn (83)
by sin a,, of eqn (84) by cos «, and subtraction of these equations, we obtain

1

t' sin %, —¢° cos x, = 0. (83)
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Substituting the friction force components (71) and (72) into this relation yields

C:lllCOSJ1‘_C|22:Sinlzv\(*_(czll:_’*_c‘:l:l+C22||_C“ll)
X €08’ 2, sinx, + (CT—CMBR iy
X SN’ %, cOs 2, + (C31 4 CHR L CHN _cIir_cun i
x cos” x, sin” %, + C*' cos 2, — C'*sin’ a,

+(C**—=C")sinx,cosx, = 0. (86)

Itis a fourth-order trigonometrical equation for the principal directions of friction. Depend-
ing on the C“* and CY values it can have four, three. two, one or zero real roots for
a.€<0, ). Thus. the frictional anisotropies, with four, three, two. one and zero principal
directions of friction can be distinguished. Generally, the polynomial (59) defines frictional
anisotropies with arbitrary number of principal directions. The linear model of frictional
anisotropy is limited to a maximum of two principal directions.

Relying on the experimental investigations of frictional anisotropy of single crystals
(Scal. 1957 ; Bailey and Gwathmey. 1962 ; Bowden and Brooks, 1966 ; Buckley, 1968 ; Casey
and Wilks, 1973 Enomato and Tabor, 1980). one would expect that, in some cases, the
number of principal directions of friction can be finite and larger than two. This property
is completely described by the nonlincar model of frictional anisotropy.

Property 4. Anisotropic, tetragonal anisotropic, orthotropic and isotropic friction can
be distinguished with the aid of the friction tensor C, and symmetry groups.

The tensors C, and C, define the frictional anisotropy and symmetrics. Duce to the
polynomial character of the constitutive relation (59), the symmetry groups of the tensors
C, and C, arc complementary. In other words the symmetry group of the friction equation
(59) is the intersection of the symmetry groups of the tensors C, and C,

Y=%c,.c,=%c,NYc, 87)

A subgroup %¢, of the full orthogonal group € is called a symmetry group of the
tensor C, if it satisfies the following relation

4
{/'”C:= {R:REU', (®l R)'C:=C:} (88)
4
where, (>ID denotes the composition

<é R>-C1 — C'MRk, ® Re, ® Re, @ Re, (89)

The definition (88) says that every member of the symmetry group commutes with C,. For
convenience and without loss of gencrality we assume that the tensor C, is a spherical
tensor. Then, the symmetry group of the tensor C, determines symmetry of the constitutive
relation (59)

c.c. =%, (90)

since

Ge, = C. o1
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A classification of the nonlinear models of frictional anisotropy can be carried out with the
help of symmetry groups.

The group %c, of symmetry of tetragonal anisotropic friction has a four-fold rotation
axis normal to the contact and the subgroup of mirror reflections with respect to subspaces
orthogonal to four principal directions of friction. The generators of this eight-order
symmetry group are

Fe. = (LR U Ju da o dn du, b (92)

Here, the symbol R? denotes a rotation about the n-fold rotation axis with the unit vector
n through an angle being a multiplicity of

2
w:-;, n=1.2.3.... (93)

For every rotation tensor R? there exists an orthonormal basis {n.k,}.7 = I, 2and a number
pe {0.2n) such that

R =n®@un+cos ok, @k, +k; @k:)+sin ¢ (k, ®k,~k: ® k) (94)
where
kok =d, nk=0 nn=t ij=12 (95)

The central inversion transformation is contained in the subgroup {R} 7). Table | shows
composition operations for the generators of the symmetry group of the tetragonal ani-
sotropy (92). The rotation angles n/2, 3n/2 and inversion — 1 define the clements of the
subgroup of rotation about four-fold rotation axes. From Table 1 it is scen that the group
of symmetry (92) is & non-Abclian group.

The symmetry conditions allow us to determine the restrictions imposed on C, for
various symmetries corresponding to diflerent kinds of anisotropy. [t means that symmetries
are equivalent to spectfic relations between tensor cocflicients. To describe the trans-
formations which characterize a class of symmetry, it is convenient to choose a reference
coordinite system. Let Oxy be the orthogonal frame system and the base vectors [k} and
fe,} coincide with this system. Sixteen elements of the representation of the tensor C, can

Table 1, Cayley square for the generators of the symmetry group of the tetragonal anisotropic friction.

1 -1 In Ju, Jn Ju, I,
2 2
i 1 n -1 3n Ja, J. Jo, o
3 3
. n =1 3n t J"‘« J"‘x J"': ,'*H
B 2 2
~1 -1 3n s n 5 Ja .., Ja,
2 2 ] 4 N
n in 1 7 ~1 J., Ja, i, o
2 2 2 )
. J. J. Jo I t m -1 in
t r 1 L3 2 2
Ja, Ju, I, Ju, J., 3n | ﬂ -1
’ ’ 2 2
Ju J. Ju Ja Ju, -1 in i x
, . . , ; :
S Ju I o, Jn " -1 i 1
. . ‘ . p X
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be arranged in a table

11 22 21 12
Cllll CIIZZ CIIZI CIIIZ 11
C::ll CZZZZ C:ZZI CZZIZ 22
(C.l = cH oot enu crz oy (96)
Cllll CIZZZ CIZZI ClZIZ 12

They are ordered by pairs of indices. The restriction on the components of the tensor C,
due to the symmetry conditions can be obtained by a standard procedure, e.g. an inspection
method (Nye, 1957). In this way the following four independent elements of the tensor C,
for the tetragonal anisotropy are determined.

I 22 21 12
CIHI Cll;'l 0 0 Il
Cuz: Cllll 0 0 22
C7 = 97
[ '] 0 0 C:lZl C:lIZ 21 ( )
0 0 CZH': CZIZI |2

Substituting this representation into (71), (72) and (86) we get the friction force components
and principal directions for the tetragonal anisotropic friction.

Orthotropic friction has been defined by the symmetry group which contains the trivial
subgroup and the subgroup of two mirror reflections (40). It can be shown that in the case
of orthotropy the representation of the tensor C, has two independent elements specified

by

1 22 21 12
c'''' o 0 0 ¥
0 c# o0 0 2

(C.] = (98)
0 0 C* o0 21
0 0 0 c''lz

Using this tensor representation we get two mutually orthogonal principal directions of
friction and an ellipse as the friction force hodograph.

The isotropic friction is defined by the full orthogonal group (47). In this case the
representation of the tensor C, has one independent element and the table (96) reduces to

11 22 21 12
c'' oo 0 0 11
0 ct''' 0 0 22
[C.} = 1 9%
0 0 C 0 21
0 0 0 ct'""1]12

Here, all sliding directions are principal directions of friction and the friction force hodo-

graph is a circle.
There is a particular case of frictional anisotropy. It corresponds to a constant angle

of inclination of the friction force vector to the sliding direction for any direction
B(a,) = const. (100)

Rotations and trivial subgroup built its symmetry group. The hodograph is a circle as in
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the isotropic case. Then the representation of the tensor C, is given by

11 22 21 12
Cllll 0 CIIZ! 0
il - 1izy b}
(C:] = 0 ) ¢ 0 N — (101)
_Cll-l 0 ClIH 0 2]
0 Cll?.l 0 Cllll 12

The same situation occurs in the linear model of frictional anisotropy. Then the second-
order friction tensor C, of the form (8) has the following components

c''=cC* (102)

C'i= —C*. (103)

The trivial subgroup (45) is a symmetry group in other cases of the nonlinear model
of frictional anisotropy and there are no restrictions on the representation of the friction
tensor C,.

With the aid of the next terms of the polynomial (59) we can describe, e.g. a hexagonal
and octogonal anisotropy of friction. They are determined by symmetry groups with six-
fold and eight-fold rotation axes and mirror reflection subgroups with respect to six and
cight principal directions, respectively. The method to be followed in the tensor rep-
resentation determination is analogous to that which has been employed in the tetragonal
anisotropic case. It is possible that there is a close relation between the friction phenomenon
on a crystal face and a crystallographic system of a given compound. A dependence of the
friction symmetry and a dependence of the number of principal directions of friction on
the crystal symmetry are not known, yet.

Property 5. All linear and nonlinear models of frictional anisotropy described by the
friction tensor C, and C, are centrosymmetrical.

The inversion is that transformation which characterizes anisotropy with centre of
symmetry. For the two-dimensional space the central inversion transformation is equivalent
to the rotation about the normal n to the space of the angle n

—1 =R~ (104)

Taking the definition of symmetry group of the tensor C, (36) and C, (88) we see that the
following relations hold.

[é(—l)]'c,=C”(—-l)k,®(~l)e,=C, (103)

[é (—l)]'Cz = C"(-1k® (= De, ®(-Ne. ® (— e, = C.. (106)

Thus, the inversion transformation does not change the friction tensors C, and C,, and
both groups of symmetry %¢, and ¥, are centrosymmetrical. They contain the central
inversion transformation and its products with other group transformations. In view of
these results the linear and nonlinear models of frictional anisotropy are said to be cen-
trosymmetrical. The existence of a centre of symmetry has no effect on the number of tensor
components.

In accordance with this property. if we change the sliding direction by an angle n then
the friction force changes its direction by the same angle but does not change its magnitude
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and its angle of inclination B. Thus, the absolute value of the anisotropic friction force
depends on the sliding direction and does not depend on the sense of this direction.

The following two general properties hold in every case of the linear and nonlinear
model of frictional anisotropy. Frictional description constructed in the space #° is form-
invanant with respect to the mirror reflection related to that space. Frictional anisotropy
homogeneous over the contact area has an Abelian continuous symmetry group of trans-
lations in the space #°.

Tangential forces to the contact pointing in the area bounded by the nonlinear friction
force hodograph define the adherence region. A similar condition has been formulated in
the case of linear frictional anisotropy. The initial direction of motion is such that the sum
of components orthogonal to it of the tangential force causing it (f) and the friction force
is equal to zero:

[~ (£ V)V]+[t—(t-v)v] = 0. (107)

Then the absolute value of the tangential force projection on the motion direction is greater
than the absolute value of the friction force projection on this direction :

If-v] > |t-v]. (108)

We shall illustrate some properties of the nonlinear model of frictional anisotropy by
diagrams in Appendix B.

4. A COMPOSITION OF TWO DIFFERENT FRICTIONAL ANISOTROPIES

Up to now our analysis of the lincar and nonlinear models of frictional anisotropy has
been related to friction forces during the sliding of two contacting surfaces with single
isotropic and anisotropic frictional propertics. Zmitrowicz (1978 and 1981) considered
frictional forces during the sliding of surfaces with different anisotropic friction properties.
Now, we expand it to the nonlincar model.

Assume that there arc orthogonal reference systems on both contacting surfaces. The
coeflicients of the tensors C; and C, can be determined experimentally by sliding a third
body with isotropic friction properties on the surfaces of each contacting body. The values
‘8"’. (Cﬂ""’ (s = 1,2) found experimentally are used to formulate matrix representations of

() (») .. .
the friction tensors C,, C,. These tensors describe the friction properties of surfaces (1) and

(2), respectively.
Relative positions of the contacting surfaces are described by an angle ¢ (Fig. 3). Then

)
3 @

) (2)

( x2
X2
=3

Fig. 3. Relative position of the reference systems at the contact of surfaces (1) and (2).

SAS 25:8-B
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the following relation holds between the unit vectors of the bases of the reference systems

Lj=1.2 (109)

where

H

. B 1
sing@  €os ¢ [B] (1o

(8] = [:COS © —sin (p}

is an orthogonal rotation matrix.

Hypothesis 2. Let us assume that for a given normal pressure the friction force on the
contact surface during relative sliding is equal to the product of a “"composition coefficient”
and the sum of the friction forces obtained for each surface taken separately. i.e.

t=(C+t) (11

The forces ft“ and ‘i) correspond to friction when sliding a third body with isotropic
friction propertics along the contacting surfaces. The coetlicient #, which is called the
composition cocflicient, is an experimental quantity and its value will not affect the descrip-
tion of the directional propertics of friction in the contact of surfuces.

After substituting the friction constitutive equation (59) and the transformation
relation (109} into eyn (111), we obtain the friction force relative to the contact of two
different surfaces.

t= —NCv+Cav'+ ). (112)

According to the definition {111), the matrix representations of the friction tensors C, and
C, are defined by

(€] = xf} ¢ +B'¢ B[ (113)
(€] = .//‘,A(Cl‘);+I!"(l¥"‘(:;”lli)l¥] (114)

h {2 (RS {2 ) Lo
where [C,], {C! I [C; I and {C;} are matrix representations of the friction tensors for the

surfaces (1) and (2), respectively.

Experimental measurements of the composition anisotropy for two rough surfuces
with orthotropic triction propertics are given by Sharpin (1957). A change of frictional
anisotropy with respect to a relative orientation of faces of contacting diamond crystals has
been observed by Scal (1957).

5. CONCLUSIONS

(1) A lincar model of frictional anisotropy with two principal directions of friction and
with elliptical hodographs of the friction force is presented in this paper. Frictional isotropy
has an infinite number of principal directions and a circle for hodograph.

(2) A nonlinear model of frictional anisotropy describing the friction with an arbitrary
number of principal directions of friction and with arbitrary shapes of the friction force
hodographs has been formulated.

(3) The experiments show that there are classes of friction problems where the linear
and nonlinear models of frictional anisotropy are relevant. It might be expected that future
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investigations will give new experimental data on anisotropic friction. Then, adequate
quantitative comparison of experimental and theoretical results will be possible.

(4) The frictional anisotropy models can be extended to include other contact phenom-
ena. Friction tensor representations can be functions of surface temperature, temperature
gradients, sliding velocity, normal pressure, etc. (Zmitrowicz, 1987).

Considering frictional anisotropy in contact problems, vibration and dynamical analy-
sis. tribological experiments. machining processes, metal forming, rail/wheel contact mech-
anics, etc.. leads to a more realistic image of these physical processes Frictional anisotropy
can play a great role in engineering applications of crystals. For instance diamonds are used
for boring tools. abrasive disks and glass cutting. Rubies are used for bearings in precision
measuring instruments. Finally, diamond. sapphire and SiC are used as so-called wear-
resistant materials.
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APPENDIX A. ILLUSTRATION OF THE LINEAR MODEL OF ANISOTROPIC FRICTION

In accordance with (19) we may take any real numbers as the friction coefficients g,, with only one restriction,
namely the friction tensor C, must be positive definitec. As an example we take coefficient values which are
typical for friction in metals. We consider the following cases: anisotropic friction without principal directions
(U, =0.06; 1, =-0.03:u,, =001;:u,. =0.07:¢, =¢, = 0), anisotropic friction with one principal direction
(=01 pu,=~002; u,, =002, u;, =0.06: ¢, = ¢, = 07), anisotropic friction with two principal directions
(y, =0.1: ), =004: p,, =001; u,, =0.1: ¢, =¢, =07), orthotropic friction (u,, =0.13; u,; = —-0.03;
py = —003; u., =008 ¢, =¢, =0). Figures Al A4 show the following plots: (a) the friction coefficient u}
and (b) friction coefficient y, referring to polar coordinates, (c) the inclination angle § and (d) the friction force
hodograph with respect to an orthogonal reference system. Principal directions of friction and corresponding zero
points of the function f = f(x,) are shown in the figures. The presented diagrams cover all types of frictional
anisotropy.

In the case of frictional orthotropy (Fig. A4) the directions of u) extreme values (16) coincide with the
principal directions of frictions and with the hodograph ellipse axes. The direction of maximal value of 4! coincides
with the longer axis of the hodograph ellipse. It is a typical property of frictional orthotropy.

Experimental measurements presented by Rabinowicz (1957), Sharpin (1957) and Halaunbrenner (1960)
provide a good illustration of the linear model of frictional anisotropy, e.g. frictional orthotropy is dealt with by
Rabinowicz (1957). Experiments by Halaunbrenner (1960) are typical of frictional anisotropy without principal
directions.

Itis important to consider the directional dependence of friction between contacting bodies in relative motion,
because it changes markedly the nature of the phenomenon. We analyse propertics of a material point motion in
a plane with frictional anisotropy. Figures AS A7 present trajectories of the material point motion in the plance
with frictional propertics shown by the Figs Al, A2 and A4, respectively. The following equation describes the
motion

mq =t (Al)
where, m is the mass of the material point, g its position vector and t the friction force vector. The velocity q, is

taken as the initial condition of motion. We consider diflerent directions of the initial velocity. They are given by
the angle %,

[q‘)l = ll]n COS Ay, ‘]u sin a\)]" (AZ)
(a) %0* (b) 90°
Fs
Me (u_‘_
130° o° 180° 00% 0°
) ) \
270° 270°
A
(c) P
(d) At
20‘/\/
90° 180" o, r t:_
£ \ 0,09

Fig. Al. Nlustration of the anisotropic friction without principal directions of friction: (a) friction
coefficient ! ; (b) friction coefficient u, ; (c) inclination angle #: (d) friction force hodograph.



Mathematical descriptions of anisotropic friction

+ %0°
(a) /.L‘ (b 90°
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180° o 110 /_\ ‘D 0
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T oo
) |/
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270
270°

@ fp @ Ay

20/ :
a7

%° e &, /008
~ — /

Fig. A2. lllustration of the anisotropic [riction with one principal direction of friction: () friction
cocflicient g ; (b) friction coctlicient g, ; (¢) inclination angle f#; (d) friction force hodograph.

(a) 90° R {(b)
(u't g0°
Mea
~ ~
Ago® 01 0° 180° 0,03 o
270°
270°

-40

Fig. A3. lllustration of the anisotropic friction with two principal directions of friction : (a) friction
coefficient y; : (b) friction coefficient u,; (c) inclination angle #; (d) friction force hodograph.
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(@ il (b) .
90

/ M
~ / (\ %
130° B\ 0,01 o ud 0,03 0°
=
/

270°
210°
4
(c) P d) st
/
”.
%0° 0,0% tf
-40 ~ -

Fig. A4, Hlustration of the orthotrepic friction: (a) friction coctlicient ¢! © (b) friction cocllicient
#, (©) inclination angle f#; (d) friction force hodograph.

3 2827
da X

madkg

0° 225° 45° 675° 90° M25° 435° 1579°
Ka| 480° 2025° 225° 2475° 270° 2925° 35° 3a75°

Fig. AS. Motion of a material point in a plane with anisotropic friction without principal directions
of friction.
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0° 225° 45° 675° 90° M25° 135° 1575°
180" 202,5° 225° 2475° 270° 2925° $13° 3315°

Fig. A6. Motion of a material point in a plane with anisotropic friction with one principal direction

of friction.
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Y :w-a "75
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m-4k9

&

o

20° 42,5° 65° 81,5° 440° 132,5° 193° 171.5°
200° 2225° 245° 261.5° 290° 32,5° 335° 3515

Fig. A7. Motion of a material point in a plane with orthotropic friction.
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and specified in Figs A5-A7. Components of the slip velocity unit vector are as follows

$v v =—q:: (A3)
NRETES

V@) (g}

v, =

re

where ¢, and g, are the velocity components. The nonlinear equation (Al) is solved by means of the Runge-
Kutta fourth-order method.

The material point motion is a retarded motion. The length of the point trajectory depends on the frictional
resistance. Intervals between points on the trajectory shown in Figs AS-A7 correspond to constant time intervals
(0.2 s). The trajectory is a segment colinear with the principal direction of friction when the motion occurs in this
direction. The trajectories in the case of orthotropic friction are curved in the direction of minimal friction.

APPENDIX B. ILLUSTRATION OF THE NONLINEAR MODEL OF ANISOTROPIC FRICTION

The following examples of the friction nonlinear model are considered: anisotropic friction with three

principal directions (C'' = C#¥* = 0.1;C'"'"' = C¥¥' = 0.05:C'""¥ = —C¥™¥* ¥ = - C""? = =002, C'"*' = 0.03;
C¥P= ~0.06; C'***= —0.01), anisotropic friction with four principal directions (C''= C** =0.07;
C'"' = C¥ = 005:CM" = CHM1T=003.CH = 0.06;CH = C' = €' = 0.02) and tetragonal aniso-
ll’OplC friC(iOn (Cl|=C2:=O'O7: C1111=C212:=0-02: C||1!=CZZII=O'08.‘ C:‘:I=C‘:':=0.Ol;

C32 = 132 = 0.06). Only the nonzero elements of the tensors C, and C, are given. Figures BI-B3 show the
diagrams of the friction coefficient u} (a), the friction cocfficient g, (b). the inclination angle B () and the friction
force hodograph (d). It is scen that the nonlinear model of frictional anisotropy gives hodographs of complex
shapes. Figures B4 and BS5 present trajectories of the material point motion in the surface with frictional
anisotropies described by the nonlinear models. The frictional properties of the surface are shown in Figs B2 and
B3, respectively.

A similarity of theoretical and experimental results can be noticed if we compare the plots for the tetragonal
anisotropy {Fig. B3) with experimental investigations of frictional anisotropy for diamond crystals (Bowden and
Brooks, 1966; Cascy and Wilks, [973; Enomoto and Tabor, 1980) and for rough surfaces (Zielinski, 1964),
Experiments carried out by Zicliniski (1964) show that the friction force hodograph can be different from a circle
and an ellipse. It results from the complex influence of the surface roughness produced by machining on the
frictional anisotropy.

Fig. B1. Ilustration of the anisotropic friction with three principal directions of friction: (a) friction
coefficient ut ; (b) friction cocfficient g, : (c) inclination angle f#; (d) friction force hodograph.
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Fig. B2. lustration of the anisotropic friction with four principal dircctions of friction: (a) friction
cocflicient ! ; (b) friction cocflicient g, ; () inclination angle #; (d) friction force hodograph.

(c)
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Fig. B3. Ulustration of the tetragonal anisotropic friction: (a) friction coefficient u} ; (b) friction
coefficient g, ; (c) inclination angle §; (d) friction force hodograph.
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Fig. B4. Motion of a material pointin a plane with anisotropic friction with three principal directions
of friction.
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Fig. BS. Motion of a material point in a plane with tetragonal anisotropic friction.



